(8 || INDUSTRIAL MANAGEMENT & DATA SYSTEMS 95,6

Object-oriented database systems:

an implementation plan

Timothy J. Waltz, David (Chi-Chung) Yen and Sooun Lee

Summarizes the basic tenets of an object-oriented database system, a brief history of object-oriented
programming and the implications of the object-oriented approach

Introduction

For the past decade or so, relational database (RDB)
management systems have been the industry standard,
but that position is beginning to be challenged. The
changing face of computing, from distributed networks to
advanced graphical applications to telecommunications,
has placed new demands on information systems (IS)
managers. Corporate databases are forced to contend
with an ever-changing and growing data set, often
needing to store complex data types that traditional RDB
systems have trouble handling. It is for these reasons that
object-oriented database (ODB) management systems
offer the promise of help to IS managers.

Proponents of the object-oriented approach feel that the
technology offers many advantages over older, traditional
models. By using objects to model the real world, system
design can be done quicker and with a greater
understanding. Also, the use of objects makes previously
written code more accessible, which improves
maintenance. But perhaps the most important benefit the
object-oriented approach offers, which has not been fully
realized yet, is reusability. Objects developed for one
system can be ported to other systems and programs, and
used in conjunction with those objects, with very little or
no additional code written. This promise sounds very
good to managers and programmers who must deal with
a dynamically changing world.

Object-oriented technology is one of the faster growing
segments of the computing industry. Object-oriented
languages are becoming industry standards, primarily
because of the popularity of C++. And when a standard
is finally decided on for C++, it should only increase the
popularity of the language, as well as smooth over some
of the problems programmers have using C++ code on
different compilers. And while ODB systems have not
supplanted RDB systems yet, the fact that industry
people are debating the merits of the two shows that it
has made an impact. Indeed, many relational software
vendors are already beginning to include object-oriented

Industrial Management & Data Systems, Vol. 95 No. 6, 1995, pp. 8-17
© MCB University Press Limited, 0263-5577

type capabilities to their database systems in order to
meet the needs of their users[1]. And in 1992, 35 of the top
100 software vendors offered some type of ODB
management system[2].

But if object-oriented systems are going to be the next
standard, taking a share of the database market away
from RDB systems will prove to be difficult. Ovum Ltd, a
market research firm, forecast that sales of ODB systems
will be more than $1 billion by 1996[3]. However, as
recently as 1992, the ODB market was estimated at only
$25 million[4]. There is a long way between the promise of
object-oriented technology and the state of the
technology today.

One hurdle ODB systems will have to overcome is human
nature. Computer professionals are usually wary of new
technology, at least until the inevitable bugs get worked
out. With the proliferation of RDB systems and the
countless dollars businesses have poured into setting up
their current systems, MIS departments will be reluctant
to throw their money at a new technology which has been
marketed more towards niche markets than general
applications[5]. It pays to be sure when dealing with
database systems for production applications, because
hidden costs of a mistake can be more costly than
waiting. That is what makes purchasing and designing
database applications such a long-term commitment[3]. It
will be a while before IS departments begin converting to
ODB systems in large numbers.

But many analysts feel “the question is not whether ODB
systems will gain prominence but when”[3]. The benefits
of object-oriented technology, when fully realized, will
cause a dramatic improvement in the way IS departments
are able to deal with information. Because of this, the
development of an implementation framework is
necessary in order to prepare for the coming paradigm
shift. It will pay off in the long run to take the time now to
look carefully at where the company is, where it needs to
be, and how it can use object-oriented technology to get
there. Since the technology is still relatively new, there is
little information out at the moment on how companies
can best prepare themselves to move over to an ODB
system. There are a host of issues involved, such as

OBJECT-ORIENTED DATABASE SYSTEMS: AN IMPLEMENTATION PLAN m

training of personnel, upgrading of hardware, as well as
restructuring the way data are stored. There are also
issues crucial to database management, such as security,
back-up and recovery, and access for users, that need to
be addressed in the light of ODB systems.

This article will attempt to define an object-oriented
database system, as well as its primary characteristics,
benefits and disadvantages. An in-depth comparison of
ODB systems and RDB systems will also be provided.
Feasibilities will be addressed, as well as a discussion of
some things that must be taken into consideration when
setting up an ODB system.

Object-oriented programming

History

Previously, programming was done with an emphasis on
procedures, or how to solve a problem. The standard way
of solving a problem was to break it down into smaller
and smaller steps, and then code each step, or procedure.
But while this algorithm works well for some problems,
its inherent faults became obvious during the early to
mid-1980s as problems and data structures became more
and more complex. Traditional programming is too linear
to handle some of the complex scenarios that today’s
computing requires, as people try to access video, sound,
and all the event-driven needs of a graphical user
interface.

Object-oriented concepts have been around since the
1950s, and culminated in Europe in the language
Simula67[6]. Since then, there have been two paths that
object-oriented languages have taken. There are several
languages that are designed from the ground up to be
object-oriented, which include Smalltalk and Eiffel. The
other path entails adding features to an already existing
language to give it object-oriented capabilities.
Languages such as these include C++, Object LISP, and
CLASCAL]JT].

It was only in the latter half of the 1980s, though, that
object-oriented programming (OOP) really began to take
off, and along with it the popularity of C++. C++ is the
addition to the C programming language, which in turn
was derived from two other languages, B and BCPL, all of
which were created at Bell Laboratories. BCPL was
developed in 1967 by Martin Richards, and B was
developed by Ken Thompson and used in 1970 to create
the first UNIX system. C, which was developed by Dennis
Ritchie, was first implemented in 1972. Since the
development language of the UNIX operating system, C
has enjoyed widespread success, especially with the
eventual development of the ANSI standard in 1989,
which assured a machine-independent definition of the
language[6]. The evolution of C++ began with Bjarne
Stroustrup adding classes to C in 1980, and culminated in

the mid-1980s as C++ became a fully fledged object-
oriented language[8].

While still relatively new, C++ is quickly becoming the
standard of the industry. Its popularity stems from its
ability to solve complex problems easier than can be
done with procedural programming. Object-oriented
programming entails an entirely new way of looking at
problems, one which many people feel addresses the
needs of modern programming. The principal difference
between the object-oriented approach and procedural
programming is that procedures are associated with the
data they manipulate: “You don't write a procedure to act
on data; rather you write a method to let an object change
itself”[9]. Since each object contains all the data it needs,
and provides services for itself as well as other objects,
objects of all different types can be combined in a
program and they will know how to interact with one
another, and can be combined with very little recoding.
Modularity and ease of programming are the promises of
OOP and the main reason it is gaining so much support.

One of the primary areas where object-oriented
programming has already been applied is in the creation
of graphical user interfaces (GUI). GUls have become
important for making computers accessible to all kinds of
computer users, from beginners to more experienced
hackers.

Programming requires
complex event
handling O]

The benefit of a GUI is that users know what to expect
from a software package, even if they have never used it
before, because it has a similar interface to other
packages they have used. This similarity allows
developers to create seamless systems, reduces learning
curves and improves application usability.

But programming to allow users to use a mouse to point,
click and drag, is very difficult. It requires complex event
handling, and needs many different facets of the interface,
such as windows, buttons and menu bars, to
communicate with one another. By using the object-
oriented approach, the elements of a computer screen can
be divided into different objects, each with their own data
and operations. In fact, there are quite a few software
packages (Visual C++, Visual Basic) that allow
developers to create complex and fully functional GUI
with a limited amount of programming, because they tap
into the power of OOP.

INDUSTRIAL MANAGEMENT & DATA SYSTEMS 95,6

Developers began applying OOP concepts to develop
database systems, with the first ones becoming available
around 1986. Most of the early ODBs were stand alone
systems, however, designed to run only on the platforms
they were created for. It is estimated that only 400 to 500
of these were in place by 1990. It was not until the late-
1980s and early-1990s that more advanced and portable
ODBs became available. Products such as Ontos, Object
Design, Objectivity and Versant Object Technology
became available, each residing on the joint platform of
C++, X Window System and UNIX workstations and
utilizing a client/server architecture.

In the early 1990s, more fully functional ODBs were
introduced such as Itasca, 0,s and Zeitgeist. These ODBs
offered more advanced characteristics, such as version
support and most importantly the beginnings of fully
functional DDL/DML capabilities[10]. The evolution of
object-oriented technology and database systems is
illustrated in Figure 1 and Table I.

Definition

One of the most important parts of OOP is identifying an
object. A simplistic approach is to examine a problem and
identify what the nouns are, and those will usually end up
being the objects. A more rigorous definition is that an
object is an entity that has certain information unigue to
itself, its state data, and certain actions that it performs,
its internal and external operations. As an example, if a
program was being written for a university, some of the

Figure 1. Evolution of object-oriented technology

x - C++ standard discussed
X - ANSI standard adopted
X - first ODB developed
x - development of C++
X - development of C
x - development of simula 67

Year 1970 75 80 85 90 95

Table |. Evolution of object-oriented database systems

Figure 2. Example of a class and objects

Class: Student
Data: Name
Address

Phone number

Social security number
Current schedule
Academic adviser
Year

Operations: confirm graduation status
pay fees
register for classes

Objects:
Dan Joe Sally
5 Main Street 2 High Street 6 Elm Street
523-8456 523-2837 523-9238
etc. etc. etc.

objects involved would include faculty, students, courses,
etc.

Obijects that share common operations and types of data
can be grouped together into a larger category, called a
class in C++ (see Figure 2). For instance, all students
must register for classes, pay fees, buy books, etc. Their
operations are shared by all objects — all students must do
this.

In addition, all students have similar information — name,
address, social security number, current schedule, past
courses taken, etc. The type of information stored in each
student record will be similar, even though the actual data
stored there are different for each object. Classes allow
programmers to treat similar objects uniformly, because
they know what type of information the objects have, and
what kind of services they can provide.

One of the most powerful features of OOP is inheritance,
or the capability of an object to borrow or “inherit” data
and operations from parent classes. A class can be created
that encapsulates common data and operations of a group
of objects, while still allowing those objects to have unique
data and operations. For instance, if we could refine our

Year Stage Achievement Obstacles
1986-1988 Beginning Support persistent languages Standalone systems based on proprietary languages
1989 Growing Client/server Incomplete error protection
Joint platform (C++, X Window, UNIX)
1990-1994 Maturity Advanced characteristics No accepted standard
Full database features Prevalence of RDB systems
The future Prosperity Accepted object standard Prevalence of RDB systems

Query language

OBJECT-ORIENTED DATABASE SYSTEMS: AN IMPLEMENTATION PLAN

student class to reflect the fact that there are different
needs for different majors. The graduation requirements
of an English major are quite different from those of a
Systems Analysis major, and to create a function within
our student class that checked the graduation
requirements within each department would be
needlessly complex. A much simpler answer, and the
power of inheritance, is to define inherited classes, one for
each department, that contain information pertinent to
that department’s major, such as departmental
coursework, graduation requirements, involvement in
departmental honour societies and so on. Each inherited
class possesses data and operations from its parent class,
as well as data and operations specific to itself. This
allows programmers to make use of code that has already
been written, and still be able to represent the unique
differences between the various subclasses. Inheritance
makes programming more intuitive as well as easier to do.

Another important facet of the object-oriented approach
is polymorphism. Polymorphism reflects the idea that the
main difference between subclasses is that they behave
differently. The idea is that each object knows what type
it is, for instance, whether it is an English major, a
Physics major, a Psychology major, etc. Programmers
using these objects do not need to know what type they
are, because the objects do.

The main difference between
sub-classes is that they
behave differently O

Take for example the function called confirm Graduation
Status. Let us say this function checks a student’s
coursework and compares it with the university
guidelines for graduation. Suppose we want to check
whether a student has also met his or her departmental
requirements for graduation. Using polymorphism, we
can also create a function called confirm Graduation
Status for each of the subclasses as well. These functions
check to see whether a student has met all the
requirements for that subclass’s department. The genius
of this approach is that programmers using these objects
do not need to know what department they are associated
with — all they need to do is ask the object to
confirmGraduationStatus. An English major would know
to call the student function as well as the englishStudent
function.

Polymorphism makes interacting with objects much
simpler than requiring the programmer to write a long
list of condition-checking clauses. By reducing code,

allowing reuse of code, and making programs more
intuitive, inheritance and polymorphism help reduce time
spent in programming and development (see Figure 3).

ODBs: comparison with traditional architecture

The encapsulation abilities of OOP help to overcome
some of the limitations of the RDB Systems. As
Thomson[11] notes, if you have a join in SQL of four keys,
it requires a nesting of several different tests of keys and
table calls. And if you need to add a fifth key, it could
require a lot of shuffling through old code to insert the
new checks and conditions.

Furthermore, the issue is not just the roundabout
programming but also the inability to abstract. It is not
possible, using SQL, to refer to a group of keys as an
entity, even though that might make referencing data
easier to code and understand. With an object-oriented
approach, one could create a class that represents the
groups of columns. If a fifth key is needed, it could simply
be added to the class, with little need to add to the code in
other classes. In this way, encapsulation makes coding
more intuitive as well as easier and more compact[11].

RDBs have trouble handling complex data types, which is
something that ODBs are quite good at. Edelstein[1]
defines complex data structures as ones that may have
“thousands of different entity types or tables, with many
relationships between them, as contrasted with business
applications that have relatively few tables”. Since objects
can be embedded in other objects, navigating through a
complex structure can be as simple as accessing one
object, which takes care of the rest of the navigation
through internal calls and calls to other objects. This is
why, until recently, ODBs have been targeted at CASE
and engineering fields, where complex data structures
are a way of life. Edelstein gives an example of a Defense

Figure 3. Example of inheritance

Class: Student

Data: Name
Address
Phone number
Social security number
Current schedule
Academic advisor
Year

Operations: Confirm graduation status
Pay fees
Register for classes

Subclass: englishStudent Subclass misStudent

Data: department coursework Data:
honours/thesis committee
academic adviser

department coursework
honours/thesis committee
academic adviser
mainframe account

Operations: confirmGraduatiuon status Operations: confirmGraduationStatus

INDUSTRIAL MANAGEMENT & DATA SYSTEMS 95,6

Department application that had 2,000 types. When run
on an RDB it required 40 hours to load, while an ODB was
able to load in only a few minutes. ODB advocates see this
as an example of what ODBs can eventually do for all IS
departments[1].

There are a variety of ways to combine the power of
object-oriented programming with database systems.
Since many IS managers are reluctant to have to shift
their costly databases on to yet another platform, one
solution calls for interfacing traditional RDBs with OOP.
There are several software packages now that offer ways
of doing this, such as CommonBase, Smalltalk/SQL,
PowerBuilder, DBKit and Persistence.

There are several different methods for interfacing OOP
with RDBs. Some of them, like CommonBase and
Smalltalk/SQL, allow programmers to objectify SQL
statements and joins, so that they can plug these objects
into the code without cluttering up the language with
SQL commands. PowerBuilder, on the other hand, is
geared towards programmers who are trying to construct
a Windows-based GUI. It contains Windows-based
objects, which create calls to SQL underneath the builder
interface. It does not offer the full object-oriented
capabilities of some of the other development tools. DBKit
and Persistence, on the other hand, are based on
objectifying parts of the ER model. The entities and
relationships are turned into objects, which in turn give
access through SQL to the data[11].

Some people argue that ODBs’ true potential lies not in
developing as a standalone database system, but as an
integration tool for bringing together a wide variety of
data types. Since you can store data as well as commands
in an object, it would be natural to allow users to access
an object which could in turn connect them to a whole
series of databases, all residing on different machines,
and formatting the results to fit into a spreadsheet or
word-processing program. Several ODBs already allow
users to do this, or to program the capabilities into their
client applications, although the technology is still in the

Table I1. Ways of interfacing ODB systems with RDB systems

development stage, and has failed to deliver fully on its
promise[5].

Similarities and differences between ODBs and RDBs are
listed in the Appendix. Ways of interfacing ODBs with
RDBs are illustrated in Table II.

ODBs: pros and cons

The lack of an object-oriented industry standard, while it
has not affected the optimism for the technology, has
made many reluctant to consider seriously an ODB yet.
Since each ODB has its own definition of what objects are
and how to implement the technology, there is limited
capability for objects from different systems to interact
with one another. This limits the use of objects to those
created by one ODB system, which is a constraint IS
managers could do without[12]. Even more damaging,
this counteracts the promise of modularity that object-
oriented enthusiasts are emphasizing.

However, the push for a standard is growing. In fact, a
standard that would allow cross-vendor portability has
been proposed by the Object Database Standard: ODMG-
93[13]. How soon this comes into existence will have a
significant impact on the success of ODBs.

Before a standard is established, however, developers will
have to deal with how objects reside in memory. Most
objects created by programs are volatile — they only exist
for the duration of the program or their calling function.
However, in order to have an ODB, objects would need to
be persistent from one running of a program to another.

As Bowman[14] says, “an ODBMS must uniquely define
objects in a way that is independent of object location,
properties and structure”. Part of this problem is that “00
data management concepts have evolved from
programming environments, rather than data
management theories”[14]. As a result, ODB vendors
have had to do a lot of developing in a short period of time
in order to meet the needs of database users.

Pure ODB system

OOP on top of RDB
Factors Requires advanced programming techniques
Will not have to change existing databases
Advantages Wide variety of software currently available

Can connect wide range of platforms

Disadvantages Lose some of the power of object model

Tuple orientation does not fit easily with object model
Cross-platform functionality not fully developed

Requires advanced programming techniques
Will have to change existing databases

Make full use of encapsulation, modularity
Object-orientation is becoming the standard

Standard not yet developed

Some applications will not benefit from an ODB
Cross-platform functionality not fully developed
ODBs not yet as robust as RDBs

OBJECT-ORIENTED DATABASE SYSTEMS: AN IMPLEMENTATION PLAN

Another road-block for object-oriented databases is that
they have no ready-to-use query language. Since objects
are self-contained, and must provide services for other
objects that communicate with them, it is not clear how
queries would be implemented. Do developers need to
identify all the kinds of queries that other objects would
want, and code those? Will they be able to handle unique
queries that come up, or will that require additional
coding? Also, inheritance creates a problem. If we query
our student class, should we get both englishStudent and
sanStudent or just student? Issues like this will have to be
ironed out before a fully object-oriented database can be
developed[14].

It is not clear
how queries would be
Implemented [

Because objects are an effective way of modelling the real
world, it can really benefit areas which rely on being able
to reflect a dynamically changing arena, such as
engineering and enterprise modelling. In an area such as
enterprise modelling, companies are discovering that,
after several years of trying to build relational databases
that effectively model their business, they are still not
receiving benefits from that effort.

Part of the problem is that relational models are based on
entities and their relationships, which are static
snapshots of data and relationships that are important to
the enterprise. As these change over time, it necessitates
changes to the data or relationships, or creation of new
entities and relationships in order to reflect the change.
This can be time-consuming and, in a dynamically
changing place such as the business world, it can be
nearly impossible to keep up with all the changes that are
taking place. The ability to plug different objects into an
already existing ODB model, or to reuse code through
inheritance, can help IS managers to model a dynamic
process more effectively.

Also, IS managers will find it easier to keep an effective
model by constructing new objects to reflect new
influences and data, and plug those into their existing
model in order to keep it current. ODBs can help
companies have access to the information they need, even
in an ever-changing environment[15].

Because the object model more effectively represents the
real world in code, it also makes maintaining existing
code much easier. The objects used offer keys for
navigating the code and the relationships between the

various objects that can dramatically reduce the amount
of time it takes to understand a program.

Also, since objects are encapsulated, changes made to the
internal code of one object will not affect other objects,
because they are not reliant on how the object conducts
itself. This would allow developers to change small parts
of the code without it affecting the rest of the program.
Inheritance also makes it easier to reuse code and develop
new objects as needed with minimal programming time,
and reduced testing time of the new system.

ODBs: a framework for a feasibility study

It is clear that object-oriented technology is going to be a
major factor in the computer industry during the 1990s.
Even operating systems are becoming object-oriented, as
developers wrestle with how to allow users to run
applications under several different environments at the
same time[16].

However, while an object-oriented approach can offer
such benefits as reusable code, portability, ease of
programming and the ability to work easily with complex
data types, there are a lot of factors which need to be
taken into consideration before implementing such a
system. Some of these issues include technical feasibility,
software feasibility and ideological feasibility.

Technical feasibility

Owing to the different ways that ODBs store their data,
most ODB systems are designed to use a client/server
architecture. Whereas RDBs keep the buffer on the
server, ODBs operate by installing the cache on the
client. This makes traversal of the loaded database
much faster than a traversal of an RDB, although
loading large objects or complex objects can take a long
time[1]. While most companies are moving in the
direction of client/server systems already, if a company
has not done this and wants to implement a fully
functional ODB, there will be additional time and
economic costs in getting the system ready. Most ODBs
are single-server, but at least a couple of vendors offer a
fully distributed version. Most of the issues involved
with distributed RDBs also apply to ODBs, including
query optimization, transaction management, database
distribution and failure recovery, so it is possible to
extend an ODB from a client/server system to a
distributed one[7]. However, considerable start-up costs
and delays should be expected.

There is a broad range of ODBs available for many
different systems, so it should be possible to find an ODB
that can be used on current computers. In fact, one of the
benefits of an ODB is that a company can have a network
that connects several different systems together, and the
objects will know what type of system they are on and be

INDUSTRIAL MANAGEMENT & DATA SYSTEMS 95,6

able to communicate with one another. While this may
not be a reality yet[5], developers are working furiously to
make it happen[3].

Economic feasibility

There may be considerable hardware and software costs
involved in installing an ODB. Upgrades may need to be
purchased to give the system more power, and more
computers and communications links may be needed to
hook up clients to the server. There is also the installation
costs for putting the system in place, as well as the
inevitable delays in getting the system running, and the
cost of running the old system while the bugs are being
fixed in the new one.

In addition to the hardware and software costs of moving
to an ODB, there is also the cost of retraining. Since the
use of object-oriented technology represents a shift in
programming paradigms, there will be a need to train IS
staff on the use of OOP. And as many writers note, there
is a steep learning curve for OOP languages.
Programmers will need to be able to develop and
maintain the client/server system, as well as design the
interface that clients use to access the system.

A decision must also be made about the state of the
existing database system. One possibility is to keep
existing databases as they are, and use an ODB to
access the current databases. This is another example of
the kind of thing ODBs can be very good at when an
industry standard has been decided on, but at the
moment it is hit or miss as to whether a vendor offers
that feature fully.

Both pessimistic and
optimistic locks have been
proposed O]

Simply mapping an ODB on top of an RDB may not be
the optimal long-run solution, however, because it will
not offer the full reusable and modular benefits of
storing data as objects. It may make sense to change the
old database into a new object-oriented database, which
will pay off in the long run, but will entail a potentially
long and costly process at the outset.

Legal feasibility

Legal feasibility entails the ability of a company to
guarantee the safety of its data. The success of an ODB in
maintaining its data is linked to the ability of a
client/server system to maintain security. In addition,
since they put a cache on the client, an ODB must employ
some type of locking system to ensure corrupted data are

not written erroneously back on to a database. Both
pessimistic and optimistic locks have been proposed, and
it appears that a kind of hybrid of the two will be the best
solution[3].

While password protection works well for small ODBs, it
breaks down for large numbers of users and objects. This
could be particularly troublesome to multinational
companies that rely on large amounts of data flowing
back and forth. Some effective methods used have been
categorization schemes, which assign a group of users to
a role, or controlling access to groups of objects. Hiding
part of the database for certain groups of users is also an
effective way of ensuring security[3].

Operational feasibility

Given that the object-oriented approach is a radically
different paradigm from the traditional approach, it pays
for a company to examine the type of work it does and
decide whether it could stand to benefit from an object-
oriented approach.

At present ODBs do not handle large-scale databases as
well as RDBs do[3]. However, applications that require a
series of multiway joins will probably show better
performance if they are transferred to an object-oriented
framework. Also, some applications that have been
historically difficult to do with RDBs are proving very
feasible with ODBs, including manufacturing process
control, telephone switching, patient care and financial
trading systems[3]. Applications users access, address
their concerns, and so on until everybody who needs it
has access to the system. In this way, bugs and problems
can be more easily isolated and corrected while affecting
as few people as possible. If possible, the old system
should be left running while the new system is installed,
to ensure access to data[17].

Since an object-oriented approach is a paradigm shift, it
will be necessary to get people involved in the process in
order to enable it to go as smoothly as possible. Enough
time must be scheduled before the system is to go into
place to get IS personnel trained in using object-oriented
technology, and being able to develop or support the
necessary requirements of a client/server system.

It is also a good idea to talk to key personnel to find out
the strategic projects for the next couple of years, so that
the groundwork can be laid for those early in the design
phase. This will help get everyone involved and
committed to the new technology[17].

What must be kept in mind when contemplating a switch
to object-oriented systems is that it is an investment in the
future, so it is necessary to keep a long-range view of the
project, even the costs. Start-up costs could be quite
substantial for getting the system running, including
equipment upgrades, training of personnel, and the

OBJECT-ORIENTED DATABASE SYSTEMS: AN IMPLEMENTATION PLAN

expense of running the new system and the old system at
the same time. But there are benefits. In one case, an IS
manager felt that operating costs would be “about [one]
fourth of what they were before, with better performance
and integration[17].

Also the versatility of an ODB will allow companies to
react quicker to consumer forces and changes in the
marketplace. Steve Jobs believes that AT&T's inability to
react sooner to MCI's Friends and Family promotion was
because they did not have the technology in place to
handle such a program[16]. Faster and more complete
performance will be reflected in the bottom line over time.

ODBs: development framework

The typical stages for software development include
requirements specification, design, implementation,
testing and maintenance. Most computer personnel are
familiar with the basic tenets of these stages, so they will
not be covered in detail, only the aspects of each one that
are relevant to the development of an ODB.

Requirements specification

During this stage the reasons for installing or
remodelling an existing database system should be
examined, and the benefits and disadvantages of an ODB
should be weighed. Questions such as what types of data
structures will be accessed, how often the system will
need to be changed, what types of current databases will
need to be accessed, whether it is more important to be on
the cutting edge or to go with an already existing
technology - all these questions will need to be
addressed.

Design

The single most important part of designing an object-
oriented system is getting the objects right. There are
several different ways of looking at problems, and an
improperly designed project may not become unwieldy
until itis too late to change the design easily, and there are
no cheap solutions available. It pays to examine the
factors involved carefully, and to decide what are going to
be objects, what classes will be involved, how much
inheritance there will be and of what kind, how much
nesting of objects should be used, and so on: “Nothing —
including object orientation — can replace good program
design”[9].

The interaction of objects will also have to be carefully
considered. It is important that objects be able to
communicate well with one another, because that is a
prime requirement of the reusability of object-oriented
systems. Before coding even begins, it will be necessary
to consider what types of operations an object will need to
perform, what types of messages objects require from

other objects and what services they need to provide.
Time spent in the design of the objects will be reaped
much later in the project, and will greatly aid in the
development cycle.

Development

The development of the system will be tied to what type
of software is being used, as well as what approach was
decided on. No matter what type of database is running
underneath, probably the development of the client part
of the client/server system will be the development of a
GUL. If an object-oriented interface is going to be used to
bridge communication with an RDB, the communication
will need to be set up so that the necessary databases can
be accessed.

Testing

Testing really is not a stage unto itself, but more of a
constant process throughout the development of the
system. After each change the system should be checked
to make sure it still meets with the requirements
specification.

Also, the system needs to be continuously tested to make
sure that it does not threaten data integrity, and that it
performs as expected. This is where the object-oriented
approach will come in useful, because it is much easier to
develop and maintain objects because they can effectively
model the real world.

Implementation

In this stage, the code for the individual objects is finally
written. Each object should be tested by itself to make
sure that it performs as expected, and contains all the
operations that will be needed. Objects should also be
checked for integrity: if objects perform a certain way in
certain operations, they should perform that way in all
their operations. This can sometimes be difficult to
maintain if there is a complicated inheritance hierarchy.

Also, the state data of an object need to be ensured. For
instance, if certain variables are set to 0 in some
operations, but not set in others (even though they should
be 0), then the operations should be changed so that they
treat the data uniformly. There should be no surprises in
the behaviour of objects, because other programmers
need to be able to count on how objects perform.

In this stage, the objects should be brought together, a few
at a time, and tested. It is important to take it slowly,
because, if too many objects are thrown together at once
and they do not work, it can often be confusing to work
out where the problem is. It pays great dividends to take
it slowly, working small sections at once, testing, fixing,
and then continuing.

INDUSTRIAL MANAGEMENT & DATA SYSTEMS 95,6

Maintenance

This stage should be helped by the use of objects, because
it is easier to understand previously written code when
objects are used than when a traditional procedural
design has been used. Also, the use of inheritance, and the
ability to plug in other objects to an existing system will
make it easier to update and add features to an existing
system. Also, because the internal coding of objects is not
dependent on the internal coding of other objects
(encapsulation), if extensive changes need to be made to
one object, it will not require many changes, if any, to
other objects.

Conclusions

Obiject-oriented technology is still new, and it is difficult
to say at this time what its impact will be on the computer
industry. As far as programming is concerned, it has
already become an industry standard. But RDBs have
proved themselves useful, and for the moment are still the
database of choice for the industry. ODBs have only made
inroads in certain niches of the industry. Whether that
will change, only time can tell.

Itis clear that the benefits offered by ODBs are here to stay.
Just as every database system needed to call itself
relational in order to survive in the early 1980s, every
relational database vendor recognizes the potential of
object technology, and the vendors are starting to
incorporate some of the object-oriented technology into
their databases in order to remain competitive. The ability
to handle complex data structures and make use of
inheritance are some of the benefits ODBs have to offer that
RDBs are trying to provide as well. Where RDB vendors
and ODB vendors differ is on the importance of
encapsulation — it is the corner-stone of OOP, but relational
database vendors may find it difficult, and unnecessary, to
implement[1].

Whichever side wins, it is clear that the end result will be a
hybrid of relational and object-oriented database systems,
each offering a rich variety of data types, and access to a
wide variety of database systems. This can only be good
news for IS managers.

It is important for IS managers to examine the types of
data they work with, the type of system they have, and
what the needs of their company will be in the future.
Object-oriented database systems offer code reusability,
modularity, portability, expanded data capabilities, and the
ability to interface easily with a lot of different systems. In
addition, they offer all the traditional requirements of a full
database system. In order to make the best use of this
emerging technology, IS managers need to begin planning
and laying the groundwork now so that they can take full
advantage of this new technology.

References

1. Edelstein, H., “Relational vs. object-oriented”, DBMS,
November 1991, pp. 68-79.

2. Hodges, J. and Melewski, D., “Top 100: market approaches
$17b; development shifting to client/server; sales up
23%”, Software Magazine, July 1993, pp. 75-9.

3. Timo, M., “Putting object databases to work”, UNIX
Review, July 1993, pp. 73-7.

4. Varma, S., “Objects and databases: where are we now?”,
Database Programming & Design, May 1993, pp. 60-4.

5. Ricciuti, M., “Object databases find their niche”,
Datamation, 15 September 1993, pp. 56-8.

6. Deitel, H.M. and Deitel, PJ., C How to Program, Prentice-
Hall, Englewood Cliffs, NJ, 1992.

7. Kim, W,, Introduction to Object-oriented Databases, MIT
Press, Cambridge, MA, 1990.

8. Wang, P, C++ with Object-oriented Programming, PWS
Publishing Company, Boston, MA, 1994.

9. Perschke, S. and Liczbanski, M., “Is OOP in your future?”,
Data Based Advisor, October 1993, pp. 49-53.

10. Bertino, E. and Martino, L., Object-oriented Database
Systems: Concepts and Architectures, Addison-Wesley
Publishers, New York, NY, 1993.

11. Thomson, D., “Interfacing objects with the relational
DBMS”, Database Programming & Design, August 1993,
pp. 33-41.

12. Crane, A. and Thompson, G., “Object-oriented databases
coming into their own”, Computer Shopper, May 1993,
pp. 508-9.

13. McClanahan, D., “ODBMS development”, DBMS,
November 1993, pp. 20-5.

14. Bowman, C., “Why we need object-oriented systems”,
Database Programming & Design, February 1994, pp. 27-
30.

15. Due, R,, “Enterprise modeling: still in pursuit”, Database
Programming & Design, November 1992, pp. 62-5.

16. Semich, J., “What's the next step after clients/server?”,
Datamation, 15 March 1994, pp. 26-34.

17. Sharp, B., “Is it OOP yet?”, HP Professional, May 1993,
pp. 20-4.

Further reading

Amaru, C., “Where object technology fits in”, Digital News &
Review, 11 October 1993, pp. 37-40.

Emigh, J., “Software forum — corporate market to reach $51b in
'94”, Newsbytes, 25 April 1994, pp. 31-2.

English, L., “The new object databases at work”, DBMS, March
1994, pp. 66-72.

Harding, E., “ODBMSs go hybrid: HP exec explores commercial
apps”, Software Magazine, July 1993, pp. 28-9.

Higa, K., Morrison, M., Morrison, J. and Liu Sheng, O., “Object-
oriented methodology for knowledge base/database
coupling”, Communications of the ACM, June 1992, pp. 99-
113.

OBJECT-ORIENTED DATABASE SYSTEMS: AN IMPLEMENTATION PLAN

McLachlan, G., “The seven chakras of object-oriented
programming”, HP Professional, July 1993, pp. 40-4.

Premeriani, W,, Blaha, M., Rumbaugh, J. and Varwig, T., “An
object-oriented relational database”, Communications of the
ACM, November 1990, pp. 99-109.

Preston, A., “Object-oriented databases: the basics”, PC Week,
28 June 1993, pp. 165-7.

Rigney, T., “Waiting for ODBMS: for object-oriented
development, the future is now; but ODBMS lag behind”,
Database Programming & Design, September 1993, pp. 5-7.

Appendix: ODBs vs. RDBs — similarities and differences
Similarities
e ODBs and RDBs offer similar features such as data
back-up, crash protection, security, etc.

e Both offer cross-platform compatibility — RDBs through
the standard of SQL, and ODBs through the linking of
objects.

e Objects correspond roughly to rows, and classes are
similar to groups of rows in a table.

Differences

e ODBs are based on encapsulation. RDBs are based on
referential integrity.

e ODB:s are better for handling complex data types, such
as sound and graphics. RDBs are better for handling
large, distributed systems.

e RDBs have a standard; an ODB standard has not been
fully developed yet.

e ODBs offer flexibility through the ability to combine
various objects together, and to modify one object
without affecting another.

e RDBs have a query language.

e RDBs are based on a mathematical model; ODBs have
no similar philosophical basis.

e Methods are linked with data in ODBs.

Timothy J. Waltz is based in Oxford, Ohio. David (Chi-Chung) Yen is a Professor and Sooun Lee is Associate Professor,
both at the Department of Decision Sciences at Miami University, Oxford, Ohio, USA.

