Binary outcomes and endogenous explanatory variables: Tests and solutions with an application to the demand for contraceptive use in Tunisia


Author(s): Bollen KA, Guilkey DK, Mroz TA

Year: 1995

Demography 1995. 32(1):111-131.
Many demographic studies examine discrete outcomes, and researchers often suspect that some of the explanatory variable may be influenced by the same unobserved factors that determine the discrete outcome under examination. In linear models, the standard solution to this potential endogencity bias is an estimator such as two-stage least squares. These methods have been extended to models with limited dependent variables, but there is little information on the performance of the models in the types of data sets typically used in demographic research. This paper helps to fill this gap. It describes a simple analytic framework for estimating the effects of explanatory variables on discrete outcomes, which controls for the potential endogeneity of the outcomes and the explanatory variables. It summarizes the results of a Monte Carlo study of the performanc of these techniques and uses these results to suggest how researchers should approach these problems in practice. Authors apply these methods to the examination of the impact of fertility intentions on contraceptive use, based on data from the 1988 Tunisia Demographic and Health Survey.

Filed under: Contraception